COMPARATIVE STUDY OF VARIATIONAL CHAOS INDICATORS AND ODEs' NUMERICAL INTEGRATORS

Author:

DARRIBA L. A.1,MAFFIONE N. P.1,CINCOTTA P. M.1,GIORDANO C. M.1

Affiliation:

1. Grupo de Caos en Sistemas Hamiltonianos, Facultad de Ciencias Astronómicas y Geofísicas, Instituto de Astrofísica de La Plata, Universidad Nacional de La Plata, CONICET-CCT La Plata, Paseo del Bosque s/n, La Plata, B1900FWA, Buenos Aires, Argentina

Abstract

The reader can find in the literature a lot of different techniques to study the dynamics of a given system and also, many suitable numerical integrators to compute them. Notwithstanding the recent work of [Maffione et al., 2011b] for mappings, a detailed comparison among the widespread indicators of chaos in a general system is still lacking. Such a comparison could lead to select the most efficient algorithms given a certain dynamical problem. Furthermore, in order to choose the appropriate numerical integrators to compute them, more comparative studies among numerical integrators are also needed. This work deals with both problems. We first extend the work of [Maffione et al., 2011b] for mappings to the 2D [Hénon & Heiles, 1964] potential, and compare several variational indicators of chaos: the Lyapunov Indicator (LI); the Mean Exponential Growth Factor of Nearby Orbits (MEGNO); the Smaller Alignment Index (SALI) and its generalized version, the Generalized Alignment Index (GALI); the Fast Lyapunov Indicator (FLI) and its variant, the Orthogonal Fast Lyapunov Indicator (OFLI); the Spectral Distance (D) and the Dynamical Spectra of Stretching Numbers (SSNs). We also include in the record the Relative Lyapunov Indicator (RLI), which is not a variational indicator as the others. Then, we test a numerical technique to integrate Ordinary Differential Equations (ODEs) based on the Taylor method implemented by [Jorba & Zou, 2005] (called taylor), and we compare its performance with other two well-known efficient integrators: the [Prince & Dormand, 1981] implementation of a Runge–Kutta of order 7–8 (DOPRI8) and a Bulirsch–Stöer implementation. These tests are run under two very different systems from the complexity of their equations point of view: a triaxial galactic potential model and a perturbed 3D quartic oscillator. We first show that a combination of the FLI/OFLI, the MEGNO and the GALI 2N succeeds in describing in detail most of the dynamical characteristics of a general Hamiltonian system. In the second part, we show that the precision of taylor is better than that of the other integrators tested, but it is not well suited to integrate systems of equations which include the variational ones, like in the computing of almost all the preceeding indicators of chaos. The result which induces us to draw this conclusion is that the computing times spent by taylor are far greater than the times consumed by the DOPRI8 and the Bulirsch–Stöer integrators in such cases. On the other hand, the package is very efficient when we only need to integrate the equations of motion (both in precision and speed), for instance to study the chaotic diffusion. We also notice that taylor attains a greater precision on the coordinates than either the DOPRI8 or the Bulirsch–Stöer.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamical Tunneling in More than Two Degrees of Freedom;Entropy;2024-04-14

2. ON THE CORRECT COMPUTATION OF ALL LYAPUNOV EXPONENTS IN HAMILTONIAN DYNAMICAL SYSTEMS;Revista Mexicana de Astronomía y Astrofísica;2023-10-01

3. Finding regions of bounded motion in binary asteroid environment using Lagrangian descriptors;Communications in Nonlinear Science and Numerical Simulation;2023-06

4. Polynomial stochastic dynamical indicators;Celestial Mechanics and Dynamical Astronomy;2023-01-24

5. Planetary Systems. Exoplanets;Chaotic Dynamics in Planetary Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3