IDENTIFYING DISTINCT STOCHASTIC DYNAMICS FROM CHAOS: A STUDY ON MULTIMODAL NEURAL FIRING PATTERNS

Author:

YANG MINGHAO1,LIU ZHIQIANG1,LI LI2,XU YULIN2,LIU HONGJV2,GU HUAGUANG1,REN WEI1

Affiliation:

1. College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, P.R. China

2. Institute of Space Medico-Engineering, P.O. Box 5104, Branch 15, Beijing 100094, P.R. China

Abstract

Some chaotic and a series of stochastic neural firings are multimodal. Stochastic multimodal firing patterns are of special importance because they indicate a possible utility of noise. A number of previous studies confused the dynamics of chaotic and stochastic multimodal firing patterns. The confusion resulted partly from inappropriate interpretations of estimations of nonlinear time series measures. With deliberately chosen examples the present paper introduces strategies and methods of identification of stochastic firing patterns from chaotic ones. Aided by theoretical simulation we show that the stochastic multimodal firing patterns result from the effects of noise on neuronal systems near to a bifurcation between two simpler attractors, such as a point attractor and a limit cycle attractor or two limit cycle attractors. In contrast, the multimodal chaotic firing trains are generated by the dynamics of a specific strange attractor. Three systems were carefully chosen to elucidate these two mechanisms. An experimental neural pacemaker model and the Chay mathematical model were used to show the stochastic dynamics, while the deterministic Wang model was used to show the deterministic dynamics. The usage and interpretation of nonlinear time series measures were systematically tested by applying them to firing trains generated by the three systems. We successfully identified the distinct differences between stochastic and chaotic multimodal firing patterns and showed the dynamics underlying two categories of stochastic firing patterns. The first category results from the effects of noise on the neuronal system near a Hopf bifurcation. The second category results from the effects of noise on the period-adding bifurcation between two limit cycles. Although direct application of nonlinear measures to interspike interval series of these firing trains misleadingly implies chaotic properties, definition of eigen events based on more appropriate judgments of the underlying dynamics leads to accurate identifications of the stochastic properties.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3