Affiliation:
1. Department of Physical Sciences, Indian Institute of Science and Educational Research Kolkata, Campus Road, Mohanpur, West Bengal 741246, India
2. School of Mathematical and Computational Sciences, Massey University, Colombo Road, Palmerston North, 4410, New Zealand
Abstract
We consider the dynamical effects of electromagnetic flux on the discrete Chialvo neuron model. It is shown that the model can exhibit rich dynamical behaviors such as multistability, firing patterns, antimonotonicity, closed invariant curves, various routes to chaos, and fingered chaotic attractors. The system enters a chaos regime via period-doubling cascades, reverse period-doubling route, antimonotonicity, and via a closed invariant curve to chaos. The results were confirmed using the techniques of bifurcation diagrams, Lyapunov exponent diagram, phase portraits, basins of attraction, and numerical continuation of bifurcations. Different global bifurcations are also shown to exist via numerical continuation. After understanding a single neuron model, a network of Chialvo neurons is explored. A ring-star network of Chialvo neurons is considered and different dynamical regimes such as synchronous, asynchronous, and chimera states are revealed. Different continuous and piecewise continuous wavy patterns were also found during the simulations for negative coupling strengths.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献