A Novel Multiscroll Memristive Hopfield Neural Network

Author:

Li Ronghao1,Dong Enzeng1,Tong Jigang1,Wang Zenghui2

Affiliation:

1. Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, Tianjin University of Technology, Tianjin 300384, P. R. China

2. Department of Electrical Engineering, University of South Africa, Florida 1710, South Africa

Abstract

Memristors are usually introduced into neuron models as neural synapses to investigate firing activities. In this paper, a novel generic memristor with smooth cosine memductance is proposed, and its dynamic characteristic concerning multistability, which is completely different from any known memristors, is analyzed and validated by numerical and PSIM simulations. The PSIM simulations intuitively reflect the memory properties of the constructed memristor emulator. To investigate the application of the proposed memristor, a multiscroll memristive Hopfield neural network is modeled by introducing the memristor into a tri-neuron Hopfield neural network as a synapse weight. Homogeneous single-scroll and double-scroll multistability phenomena are revealed by utilizing some analytical tools, such as bifurcation diagrams, local attraction basins, phase plane portraits, and so on. It is found that there is a multi-double-scroll attractor with growing scrolls for appropriate parameters. Furthermore, the average Hamiltonian energy, dependent on the homogeneous dynamics, is analyzed based on Helmholtz’s theorem. It is discovered that the homogeneous dynamics is closely related to the energy transition, which may provide a new explanation for the occurrence of multistability in the human brain. Finally, several circuit experiments are carried out to confirm the dynamical behaviors, and it is found that the circuit can show similar dynamics as the numerical simulations.

Funder

Natural Science Foundation of Tianjin

new generation artificial intelligence technology major project of Tianjin

South African National Research Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3