CHARACTERISTICS OF THE SYNCHRONIZATION OF BRAIN ACTIVITY IMPOSED BY FINITE CONDUCTION VELOCITIES OF AXONS

Author:

FREEMAN WALTER J.1

Affiliation:

1. Division of Neurobiology LSA 129, Department of Molecular & Cell Biology, University of California, Berkeley CA 94720-3200, USA

Abstract

The electrical activity of neurons in brains fluctuates erratically both in terms of pulse trains of single neurons and the dendritic currents of populations of neurons. Obviously the neurons interact with one another in the production of intelligent behavior, so it is reasonable to expect to find evidence for varying degrees of synchronization of their pulse trains and dendritic currents in relation to behavior. However, synaptic communication between neurons depends on propagation of action potentials between neurons, often with appreciable distances between them, and the transmission delays are not compatible with synchronization in any simple way. Evidence is on hand showing that the principal form of synchrony is by establishment of a low degree of covariance among very large numbers of otherwise autonomous neurons, which allows for rapid state transitions of neural populations between successive chaotic basins of attraction along itinerant trajectories. The small fraction of covariant activity is extracted by spatial integration upon axonal transmission over divergent–convergent pathways, through which a remarkable improvement in signal-to-noise ratio is achieved. The raw traces of local activity show little evidence for synchrony, other than zero-lag correlation, which appears to be largely a statistical artifact. Brains rely less on tight phase-locking of small numbers of periodically firing neurons and more on low degrees of cooperativity achieved by order parameters influencing very large numbers of neurons. Brains appear to be indifferent to and undisturbed by widely varying time and phase relations between individual neurons and even large semi-autonomous areas of cortex comprising their mesoscopic neural masses.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3