Affiliation:
1. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, Shannxi 710049, P. R. China
Abstract
Feed-forward effect strongly modulates collective behavior of a multiple-layer neuron network and usually facilitates synchronization as signals are propagated to deep layers. However, a full synchronization of neuron system corresponds to functional disorder. In this work, we focus on a network containing two layers as the simplest model for multiple layers to investigate pattern selection during interaction between two layers. We first confirm that the chimera state emerges in layer 1 and it also induces chimera in layer 2 when the feed-forward effect is strong enough. A cluster is discovered as a transient state which separates full synchronization and chimera state and occupy a narrow region. Second, both feed-forward and back-forward effects are considered and we discover chimera states in both layers 1 and 2 under the same parameter for a large range of parameters selection. Finally, we introduce adaptive dynamics into inter-layer rather than intra-layer couplings. Under this circumstance, chimera state can still be induced and coupling matrix will be self-organized under suitable phase parameter to guarantee chimera formation. Indeed, chimera, cluster and synchronization can propagate from one layer to another in a regular multiple network for a corresponding parameter selection. More importantly, adaptive coupling is proved to control pattern selection of neuron firing in a network and this plays a key role in encoding scheme.
Funder
key National Natural Science Foundation of China
Youth program of National Natural Science Foundation of China
Opening project of State Key Laboratory
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献