Pattern Selection in Multilayer Network with Adaptive Coupling

Author:

Feng Peihua1,Wu Ying1ORCID

Affiliation:

1. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, Shannxi 710049, P. R. China

Abstract

Feed-forward effect strongly modulates collective behavior of a multiple-layer neuron network and usually facilitates synchronization as signals are propagated to deep layers. However, a full synchronization of neuron system corresponds to functional disorder. In this work, we focus on a network containing two layers as the simplest model for multiple layers to investigate pattern selection during interaction between two layers. We first confirm that the chimera state emerges in layer 1 and it also induces chimera in layer 2 when the feed-forward effect is strong enough. A cluster is discovered as a transient state which separates full synchronization and chimera state and occupy a narrow region. Second, both feed-forward and back-forward effects are considered and we discover chimera states in both layers 1 and 2 under the same parameter for a large range of parameters selection. Finally, we introduce adaptive dynamics into inter-layer rather than intra-layer couplings. Under this circumstance, chimera state can still be induced and coupling matrix will be self-organized under suitable phase parameter to guarantee chimera formation. Indeed, chimera, cluster and synchronization can propagate from one layer to another in a regular multiple network for a corresponding parameter selection. More importantly, adaptive coupling is proved to control pattern selection of neuron firing in a network and this plays a key role in encoding scheme.

Funder

key National Natural Science Foundation of China

Youth program of National Natural Science Foundation of China

Opening project of State Key Laboratory

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3