TWELVE LIMIT CYCLES IN A CUBIC CASE OF THE 16th HILBERT PROBLEM

Author:

YU P.12,HAN M.1

Affiliation:

1. Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030, P.R. China

2. Department of Applied Mathematics, The University of Western Ontario, London, Ontario, N6A 5B7, Canada

Abstract

In this paper, we prove the existence of twelve small (local) limit cycles in a planar system with third-degree polynomial functions. The best result so far in literature for a cubic order planar system is eleven limit cycles. The system considered in this paper has a saddle point at the origin and two focus points which are symmetric about the origin. This system was studied by the authors and shown to exhibit ten small limit cycles: five around each of the focus points. It will be proved in this paper that the system can have twelve small limit cycles. The major tasks involved in the proof are to compute the focus values and solve coupled enormous large polynomial equations. A computationally efficient perturbation technique based on multiple scales is employed to calculate the focus values. Moreover, the focus values are perturbed to show that the system can exactly have twelve small limit cycles.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3