Affiliation:
1. College of Automation, Guangdong University of Technology, Guangzhou 510006, P. R. China
2. Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
Abstract
Based on the principle of chaotification for continuous-time autonomous systems, which relies on two basic properties of chaos, i.e. being globally bounded with necessary positive-zero-negative Lyapunov exponents, this paper derives a feasible and unified chaotification method for designing a general chaotic continuous-time autonomous nonlinear system. For a system consisting of a linear and a nonlinear subsystems, chaotification is achieved using separation of state variables, which decomposes the system into two open-loop subsystems interacting through mutual feedback resulting in an overall closed-loop nonlinear feedback system. Under the condition that the nonlinear feedback control output is uniformly bounded where the nonlinear function is of bounded-input/bounded-output, it is proved that the resulting system is chaotic in the sense of being globally bounded with a required placement of Lyapunov exponents. Several numerical examples are given to verify the effectiveness of the theoretical design. Since linear systems are special cases of nonlinear systems, the new method is also applicable to linear systems in general.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献