SMOOTH SYMMETRIC AND LORENZ MODELS FOR UNIMODAL MAPS

Author:

LI MING-CHIA1,MALKIN MIKHAIL2

Affiliation:

1. Department of Mathematics, National Changhua University of Education, Changhua 500, Taiwan, ROC

2. Department of Mathematics, Nizhny Novgorod State Pedagogical University, Nizhny Novgorod, Russia

Abstract

For a given unimodal map F:I→I on the interval I, we consider symmetric unimodal maps (models) so that they are conjugate to F. The question motivated by [Gambaudo & Tresser, 1992] is the following: whether it is possible for symmetric model to preserve smoothness of the initial map F? We construct a symmetric model which is proved to be as smooth as F provided F has a nonflat turning point with sufficient "reserve of local evenness" at the turning point (in terms of one-sided higher derivatives at the turning point, see Definition 2.4 and Theorem 2.7). We also consider from different points of view the relationship between dynamical and ergodic properties of unimodal maps and of symmetric Lorenz maps. In particular, we present a one-to-one correspondence preserving the measure theoretic entropy, between the set of invariant measures of a symmetric unimodal map F and the set of symmetric invariant measures of the Lorenz model of F (Theorem 3.5), where by Lorenz model of F we mean the discontinuous map obtained from F by reversing its decreasing branch. Finally we extend for nonsymmetric unimodal maps, the result of Gambaudo and Tresser [1992] on Ck structural instability of the maps whose rotation interval has irrational end point (answering a question from [Gambaudo & Tresser, 1992]).

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Discrete Homoclinic Attractors of Three-Dimensional Diffeomorphisms;Lobachevskii Journal of Mathematics;2021-12

2. On α-Limit Sets in Lorenz Maps;Entropy;2021-09-02

3. On bifurcations of Lorenz attractors in the Lyubimov–Zaks model;Chaos: An Interdisciplinary Journal of Nonlinear Science;2021-09

4. Entropy charts and bifurcations for Lorenz maps with infinite derivatives;Chaos: An Interdisciplinary Journal of Nonlinear Science;2021-04

5. Wild pseudohyperbolic attractor in a four-dimensional Lorenz system;Nonlinearity;2021-02-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3