Affiliation:
1. State Key Lab of Integrated Services Networks, Xidian University, Xi’an 710071, P. R. China
2. School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane Qld, 4072, Australia
Abstract
As an emerging field for sampling paradigms, compressive sensing (CS) can sample and represent signals at a sub-Shannon–Nyquist rate. To realize CS from theory to practice, the random sensing matrices must be substituted by faster measurement operators that correspond to feasible hardware architectures. In recent years, binary matrices have attracted much research interest because of their multiplier-less and faster data acquisition. In this work, we aim to pinpoint the potential of chaotic binary sequences for constructing high-efficiency sensing implementations. In particular, the proposed chaotic binary sensing matrices are verified to meet near-optimal theoretical guarantees in terms of both the restricted isometry condition and coherence analysis. Simulation results illustrate that the proposed chaotic constructions have considerable sampling efficiency comparable to that of the random counterparts. Our framework encompasses many families of binary sensing architectures, including those formed from Logistic, Chebyshev, and Bernoulli binary chaotic sequences. With many chaotic binary sensing architectures, we can then more easily apply CS paradigm to various fields.
Funder
National Natural Science Foundation of China
The 111 Project of China
Chongqing Municipal Education Commission
SRF for ROCS, SEM
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献