DELAY, PARAMETRIC EXCITATION, AND THE NONLINEAR DYNAMICS OF CUTTING PROCESSES

Author:

STÉPÁN GÁBOR1,INSPERGER TAMÁS1,SZALAI RÓBERT1

Affiliation:

1. Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest, H-1521, Hungary

Abstract

It is a rule of thumb that time delay tends to destabilize any dynamical system. This is not true, however, in the case of delayed oscillators, which serve as mechanical models for several surprising physical phenomena. Parametric excitation of oscillatory systems also exhibits stability properties sometimes defying our physical sense. The combination of the two effects leads to challenging tasks when nonlinear dynamic behaviors in these systems are to be predicted or explained as well. This paper gives a brief historical review of the development of stability analysis in these systems, induced by newer and newer models in several fields of engineering. Local and global nonlinear behavior is also discussed in the case of the most typical parametrically excited delayed oscillator, a recent model of cutting applied to the study of high-speed milling processes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3