Effect of Static Bifurcation on Logical Stochastic Resonance in a Symmetric Bistable System

Author:

Huang Shengping1,Yang Jianhua1,Liu Huayu1,Sanjuán Miguel A. F.23

Affiliation:

1. Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, P. R. China

2. Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain

3. Department of Applied Informatics, Kaunas University of Technology, Studentu 50-415, Kaunas LT-51368, Lithuania

Abstract

In previous research works, logical stochastic resonance (LSR) was reported to frequently occur in an asymmetric bistable system, where the bias parameter is the key factor to make the LSR appear. In this work, we investigate the effect of different anharmonic periodic signals on the pitchfork and saddle-node bifurcations in a symmetric bistable system. We focus on the relationship between the static bifurcation and LSR. We use both numerical and circuit simulations to analyze some interesting phenomena. Like the bias parameter, some anharmonic periodic signals also break the symmetry of the symmetric bistable system and lead to the saddle-node bifurcation. The anharmonic periodic signal with a constant term in its expanded Fourier series induces a reliable LSR in the symmetric bistable system. The key factor of LSR is the saddle-node bifurcation which implies the asymmetry of the system. Here, we replace the bias parameter by choosing an anharmonic periodic signal and make the LSR occur in a different way.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Spanish State Research Agency (AEI) and the European Regional Development Fund

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3