Periodic Orbit Bifurcations in Planar Hysteretic Systems without Equilibria
-
Published:2020-06-15
Issue:07
Volume:30
Page:2030016
-
ISSN:0218-1274
-
Container-title:International Journal of Bifurcation and Chaos
-
language:en
-
Short-container-title:Int. J. Bifurcation Chaos
Author:
Esteban Marina1ORCID,
Ponce Enrique1ORCID,
Torres Francisco1ORCID
Affiliation:
1. Departamento Matemática Aplicada II and Instituto de Matemáticas (IMUS), Escuela Técnica Superior de Ingeniería, de la Universidad de Sevilla, Camino de los Descubrimientos s/n, Sevilla, 41092, Spain
Abstract
This paper is devoted to the analysis of bidimensional piecewise linear systems with hysteresis coming from 3D systems with slow–fast dynamics. We focus our attention on the symmetric case without equilibria, determining the existence of periodic orbits as well as their stability, and possible bifurcations. New analytical characterizations of bifurcations in these hysteretic systems are obtained. In particular, bifurcations of periodic orbits from infinity, grazing and saddle-node bifurcations of periodic orbits are studied in detail and the corresponding bifurcation sets are provided. Finally, the study of the hysteretic systems is shown to be useful in detecting periodic orbits for some [Formula: see text]D piecewise linear systems.
Funder
Ministerio de Economia, Industria y Competitividad, Gobierno de Espana
Consejeria de Economia, Innovacion, Ciencia y Empleo, Junta de Andalucia
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献