EXTENDED PHASE DIAGRAM OF THE LORENZ MODEL

Author:

DULLIN H. R.1,SCHMIDT S.1,RICHTER P. H.2,GROSSMANN S. K.3

Affiliation:

1. Mathematical Sciences, Loughborough University, LE11 3TU, Loughborough, UK

2. Institut für Theoretische Physik, University of Bremen, Postfach 330 440, 28334 Bremen, Germany

3. Fachbereich Physik der Philipps-Universität, Renthof 6, D-35032 Marburg, Germany

Abstract

The parameter dependence of the various attractive solutions of the three variable nonlinear Lorenz equations is studied as a function of r, the normalized Rayleigh number, and of σ, the Prandtl number. Previous work, either for fixed σ and all r or along σ ∝ r and [Formula: see text], is extended to the entire (r, σ) parameter plane. An onion-like periodic pattern is found which is due to the alternating stability of symmetric and nonsymmetric periodic orbits. This periodic pattern is explained by considering non-trivial limits of large r and σ and thus interpolating between the above mentioned cases. The mathematical analysis uses Airy functions as introduced in previous work, but instead of concentrating on the Lorenz map we analyze the trajectories in full phase space. The periodicity of the Airy function allows to calculate analytically the periodic onion structure in the (r, σ)-plane. Previous observations about sequences of bifurcations are confirmed, and more details regarding their symmetry are reported.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3