Affiliation:
1. School of Mathematics, South China University of Technology, Guangzhou 510640, P. R. China
Abstract
Many types of neurons and excitable cells could intrinsically generate bursting activity, even in an isolated case, which plays a vital role in neuronal signaling and synaptic plasticity. In this paper, we have mainly investigated bursting types and corresponding bifurcations in the pre-Bötzinger complex respiratory rhythm neuron by using fast–slow dynamical analysis. The numerical simulation results have showed that for some appropriate parameters, the neuron model could exhibit four distinct types of fast–slow bursters. We also explored the bifurcation mechanisms related to these four types of bursters through the analysis of phase plane. Moreover, the first Lyapunov coefficient of the Hopf bifurcation, which can decide whether it is supercritical or subcritical, was calculated with the aid of MAPLE software. In addition, we analyzed the codimension-two bifurcation for equilibria of the whole system and gave a detailed theoretical derivation of the Bogdanov–Takens bifurcation. Finally, we obtained expressions for a fold bifurcation curve, a nondegenerate Hopf bifurcation curve, and a saddle homoclinic bifurcation curve near the Bogdanov–Takens bifurcation point.
Funder
the National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献