Dynamic Analysis of a Delayed Fractional-Order SIR Model with Saturated Incidence and Treatment Functions

Author:

Wang Xinhe1,Wang Zhen1,Huang Xia2,Li Yuxia2

Affiliation:

1. College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, P. R. China

2. College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, P. R. China

Abstract

In this paper, a delayed fractional-order SIR (susceptible, infected, and removed) epidemic model with saturated incidence and treatment functions is presented. Firstly, the non-negativity and boundedness of solutions of the proposed model are proved. Next, some sufficient conditions are established to ensure the local asymptotic stability of the disease-free equilibrium point [Formula: see text] and the endemic equilibrium point [Formula: see text] for any delay. Meanwhile, global asymptotic stability of the endemic equilibrium point [Formula: see text] is investigated by constructing a suitable Lyapunov function. Some sufficient conditions are established for the global asymptotic stability of this endemic equilibrium point. Finally, some numerical simulations are illustrated to verify the correctness of the theoretical results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3