Qualitative Properties of a Physically Extended Six-Dimensional Lorenz System

Author:

Zhang Fuchen1ORCID,Zhou Ping2ORCID,Xu Fei3ORCID

Affiliation:

1. School of Mathematics and Statistics, Chongqing Key Laboratory of Statistical Intelligent Computing and Monitoring, Chongqing Technology and Business University, Chongqing 400067, P. R. China

2. School of Science, Chongqing University of Posts and Telecommunications, Chongqing 430065, P. R. China

3. Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5, Canada

Abstract

In this paper, the qualitative properties of a physically extended six-dimensional Lorenz system, with additional physical terms describing rotation and density, which was proposed in [Moon et al., 2019] have been investigated. The dissipation, invariance, Lyapunov exponents, Kaplan–Yorke dimension, ultimate boundedness and global attractivity of this six-dimensional Lorenz system have been discussed in detail according to the chaotic systems theory. We find that this system exhibits chaos phenomena for a new set of parameters. It is well known that the general method for studying the bounds of a chaotic system is to construct a suitable Lyapunov-like function (or the generalized positive definite and radically unbounded Lyapunov function). However, the higher the dimension of a chaotic system, the more difficult it is to construct the Lyapunov-like function. The innovation of this paper is that we first construct the suitable Lyapunov-like function for this six-dimensional Lorenz system, and then we prove that this system is not only globally bounded for varying parameters, but it also gives a collection of global absorbing sets for this system with respect to all parameters of this system according to Lyapunov’s direct method and the optimization method. Furthermore, we obtain the rate of the trajectories going from the exterior to the global absorbing set. Some numerical simulations are presented to validate our research results. Finally, we give a direct application of the results obtained in this paper. According to the results of this paper, we can conclude that the equilibrium point [Formula: see text] of this system is globally exponentially stable.

Funder

the Natural Science Foundation of Chongqing

National Natural Science Foundation of China

the Scientific and Technological Research Program of Chongqing Municipal Education Commission

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3