Affiliation:
1. Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
Abstract
The discovery of Pluto’s small moons in the last decade has brought attention to the dynamics of the dwarf planet’s satellites. With such systems in mind, we study a planar [Formula: see text]-body system in which all the bodies are point masses, except for a single rigid body. We then present a reduced model consisting of a planar [Formula: see text]-body problem with the rigid body treated as a 1D continuum (i.e. the body is treated as a rod with an arbitrary mass distribution). Such a model provides a good approximation to highly asymmetric geometries, such as the recently observed interstellar asteroid ‘Oumuamua, but is also amenable to analysis. We analytically demonstrate the existence of homoclinic chaos in the case where one of the orbits is nearly circular by way of the Melnikov method, and give numerical evidence for chaos when the orbits are more complicated. We show that the extent of chaos in parameter space is strongly tied to the deviations from a purely circular orbit. These results suggest that chaos is ubiquitous in many-body problems when one or more of the rigid bodies exhibits nonspherical and highly asymmetric geometries. The excitation of chaotic rotations does not appear to require tidal dissipation, obliquity variation, or orbital resonance. Such dynamics give a possible explanation for routes to chaotic dynamics observed in [Formula: see text]-body systems such as the Pluto system where some of the bodies are highly nonspherical.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献