FRACTALS AND CHAOS RELATED TO ISING–ONSAGER–ZHANG LATTICES VERSUS THE JORDAN–VON NEUMANN–WIGNER PROCEDURES: QUATERNARY APPROACH

Author:

ŁAWRYNOWICZ JULIAN12,NOWAK-KȨPCZYK MAŁGORZATA3,SUZUKI OSAMU4

Affiliation:

1. Institute of Physics, University of Łodź, Pomorska 149/153, PL-90-236 Łodź, Poland

2. Institute of Mathematics, Polish Academy of Sciences, Łodź Branch, Banacha 22, PL-90-238 Łodź, Poland

3. High School of Business, Kolejowa 22, PL-26-600 Radom, Poland

4. Department of Computer and System Analysis, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, 156-8550 Setagaya-ku, Tokyo, Japan

Abstract

The paper is inspired by a spectral decomposition and fractal eigenvectors for a class of piecewise linear maps due to Tasaki et al. [1994] and by an ad hoc explicit derivation of the Heisenberg uncertainty relation based on a Peano–Hilbert planar curve, due to El Nashie [1994]. It is also inspired by an elegant generalization by Zhang [2008] of the exact solution by Onsager [1944] to the problem of description of the Ising lattices [Ising, 1925]. This generalization involves, in particular, opening the knots by a rotation in a higher dimensional space and studying important commutators in the corresponding algebra. The investigations of Onsager and Zhang, involving quaternion matrices of order being a power of two, can be reformulated with the use of the "quaternionic" sequence of Jordan algebras implied by the fundamental paper of Jordan et al. [1934]. It is closely related to Heisenberg's approach to quantum theories, as summarized by him in his essay dedicated to Bohr on the occasion of Bohr's seventieth birthday (1955). We show that the Jordan structures are closely related to some types of fractals, in particular, fractals of the algebraic structure. Our study includes fractal renormalization and the renormalized Dirac operator, meromorphic Schauder basis and hyperfunctions on fractal boundaries, and a final discussion.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3