Affiliation:
1. School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
Abstract
In this paper, a fractional-order susceptible-infected-recovered-susceptible (SIRS) model is studied, focusing on delay effects and high-order interactions. Two types of time delays are considered to describe latent period and healing cycle, respectively. From the ecological point of view, we found that the increasing delays caused by either the latent period or the healing cycle lead to the periodic outbreak of disease. The finding provided us with an important implication to preventing periodic outbreaks of disease by reducing the time delay, like accelerating the healing process with effective medication and medical intervention. Specifically, taking the time delays as bifurcation parameters, the stability of endemic equilibria and the existence of Hopf bifurcation are studied by analyzing the characteristic equation of the SIRS model. From a general point of view, based on the establishment of a fractional-order SIRS model, we found that the order of the fractional order is critical for describing the dynamic behavior of the model. Typically, the decrease of the order appears to bring about the disappearance of the periodic phenomenon (i.e. the periodic oscillation) of the originally stable system.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献