Chaos of a Single-Walled Carbon Nanotube Resulting from Periodic Parameter Perturbation

Author:

Wang Zhen12,Hu Weipeng1ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Xi’an University of Technology, Xi’an 710048, P. R. China

2. Shaanxi International Joint Research Center for Applied Technology of Controllable Neutron Source, School of Science, Xijing University, Xi’an 710123, P. R. China

Abstract

Carbon nanotubes (CNTs) are used in various nano-electromechanical systems (NEMS), and the parameters (including the system parameters and the excitation parameters) may result in chaos in these systems. Thus, understanding the mechanism of the chaos arising from NEMS is vital for CNT’s applications. Motivated by this need, the chaotic properties of a single-walled carbon nanotube system resulting from parametric excitation and external excitation are investigated in this paper. The criteria for the existence of the chaotic behavior in the system with periodic and quasi-periodic perturbations are obtained by the homoclinic Melnikov and the second-order average methods. Furthermore, in order to show the connection between periodic motion and complex behavior, the subharmonic periodic solutions, inside and outside the homoclinic loop, are analyzed. The global structure and the saddle-node bifurcation of the unperturbed averaged system are also considered. Finally, the Poincaré section and the transversal intersection of the unstable and stable manifolds are presented to verify the occurrence of chaos or subharmonic solution. The simulation results confirm the correctness of the theoretical analysis.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3