Dynamic Behaviors in a Discrete Model for Predator–Prey Interactions Involving Hibernating Vertebrates

Author:

Al-Kaff Mohammed O.12,El-Metwally Hamdy A.2,Elabbasy El-Metwally M.2,Elsadany Abd-Elalim A.34ORCID

Affiliation:

1. Department of Mathematics, Faculty of Education, Seiyun University, Hadhramout, Yemen

2. Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

3. Mathematics Department, College of Science and Humanities, Studies Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia

4. Basic Science Department, Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt

Abstract

This paper presents a discrete predator–prey interaction model involving hibernating vertebrates, with detailed analysis and simulation. Hibernation contributes to the survival and reproduction of organisms and species in the ecosystem as a whole. In addition, it also constitutes a wise sharing of time, space, and resources with others. We have created a new predator–prey model by integrating the two species, Holling-III and Holling-I, which have a bifurcation within a specified parameter range. We discovered that this system possesses the stability of fixed points as well as several bifurcation behaviors. To accomplish this, the center manifold theorem and bifurcation theory are applied to create existence conditions for period-doubling bifurcations and Neimark–Sacker bifurcations, which are depicted in the graph as distinct structures. Examples of numerical simulations include bifurcation diagrams, maximum Lyapunov exponents, and phase portraits, which demonstrate not just the validity of theoretical analysis but also complex dynamical behaviors and biological processes. Finally, the Ott–Grebogi–Yorke (OGY) method and phases of chaos control bifurcation were used to control the chaos of predator–prey model in hibernating vertebrates.

Funder

via funding from Prince Sattam bin Abdulaziz University

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3