CONTINUUM COUPLED-MAP APPROACH TO PATTERN FORMATION IN OSCILLATING GRANULAR LAYERS: ROBUSTNESS AND LIMITATION

Author:

HARRISON MARY ANN F.1,LAI YING-CHENG2

Affiliation:

1. WVHTC Foundation, 1000 Galliher Drive, Fairmount, WV 26554, USA

2. Department of Electrical Engineering, Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287, USA

Abstract

Continuum coupled maps have been proposed as a generic and universal class of models to understand pattern formation in oscillating granular layers. Such models usually involve two features: Temporal period doubling in local maps and spatial coupling. The models can generate various patterns that bear striking similarities to those observed in real experiments. Here we ask two questions: (1) How robust are patterns generated by continuum coupled maps? and (2) Are there limitations, at a quantitative level, to the continuum coupled-map approach? We address the first question by investigating the effects of noise and spatial inhomogeneity on patterns generated. We also propose a measure to characterize the sharpness of the patterns. This allows us to demonstrate that patterns generated by the model are robust to random perturbations in both space and time. For the second question, we investigate the temporal scaling behavior of the disorder function, which has been proposed to characterize experimental patterns in granular layers. We find that patterns generated by continuum coupled maps do not exhibit scaling behaviors observed in experiments, suggesting that the coupled map approach, while insightful at a qualitative level, may not yield behaviors that are of importance to pattern characterization at a more quantitative level.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3