Jitter in Piecewise-Smooth Dynamical Systems with Intersecting Discontinuity Surfaces

Author:

Jeffrey M. R.1ORCID,Kafanas G.1,Simpson D. J. W.2

Affiliation:

1. Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK

2. Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand

Abstract

Differential equations that switch between different modes of behavior across a surface of discontinuity are used to model, for example, electronic switches, mechanical contact, predator–prey preference changes, and genetic or cellular regulation. Switching in such systems is unlikely to occur precisely at the ideal discontinuity surface, but instead can involve various spatiotemporal delays or noise. If a system switches between more than two modes, across a boundary formed by the intersection of discontinuity surfaces, then its motion along that intersection becomes highly sensitive to such nonidealities. If switching across the surfaces is affected by hysteresis, time delay, or discretization, then motion along the intersection can be affected by erratic variations that we characterize as “jitter”. Introducing noise, or smoothing out the discontinuity, instead leads to steady motion along the intersection well described by the so-called canopy extension of Filippov’s sliding concept (which applies when the discontinuity surface is a simple hypersurface). We illustrate the results with numerical experiments and an example from power electronics, providing explanations for the phenomenon as far as they are known.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3