Bifurcations and Pattern Formation in a Predator–Prey Model

Author:

Cai Yongli1,Gui Zhanji2,Zhang Xuebing3,Shi Hongbo1,Wang Weiming1ORCID

Affiliation:

1. School of Mathematical Science, Huaiyin Normal University, Huaian 223300, P. R. China

2. Software Department, Hainan College of Software Technology, Qionghai 571400, P. R. China

3. College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China

Abstract

In this paper, we investigate the spatiotemporal dynamics of a Leslie–Gower predator–prey model incorporating a prey refuge subject to the Neumann boundary conditions. We mainly consider Hopf bifurcation and steady-state bifurcation which bifurcate from the constant positive steady-state of the model. In the case of Hopf bifurcation, by the center manifold theory and the normal form method, we establish the bifurcation direction and stability of bifurcating periodic solutions; in the case of steady-state bifurcation, by the local and global bifurcation theories, we prove the existence of the steady-state bifurcation, and find that there are two typical bifurcations, Turing bifurcation and Turing–Hopf bifurcation. Via numerical simulations, we find that the model exhibits not only stationary Turing pattern induced by diffusion which is dependent on space and independent of time, but also temporal periodic pattern induced by Hopf bifurcation which is dependent on time and independent of space, and spatiotemporal pattern induced by Turing–Hopf bifurcation which is dependent on both time and space. These results may enrich the pattern formation in the predator–prey model.

Funder

National Natural Science Foundation of China

National Science Foundation of Jiangsu province, China

Huaian Key Laboratory for Infectious Diseases Control and Prevention

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3