THEORY AND EXPERIMENT OF A FIRST-ORDER CHAOTIC DELAY DYNAMICAL SYSTEM

Author:

BANERJEE TANMOY1,BISWAS DEBABRATA1

Affiliation:

1. Department of Physics, University of Burdwan, Burdwan 713 104, West Bengal, India

Abstract

We report the theory and experiment of a new time-delayed chaotic (hyperchaotic) system with a single scalar time delay and a nonlinearity described by a closed form mathematical function. Detailed stability and bifurcation analyses establish that with the suitable delay and system parameters, the system shows a stable limit cycle through a supercritical Hopf bifurcation. Numerical simulations exemplify that the system depicts mono-scroll and double-scroll chaos and hyperchaos for a range of delay and other system parameters. Nonlinear behavior of the system is characterized by Lyapunov exponents and Kaplan–Yorke dimension. It is established that, for some suitably chosen system parameters, the system shows hyperchaos even for a small or moderate time delay. Finally, the system is implemented in an analogue electronic circuit using off-the-shelf circuit elements. It is shown that the behavior of the time delay chaotic electronic circuit qualitatively agrees well with our analytical and numerical results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3