Derivation of the Amplitude Equation for Reaction–Diffusion Systems via Computer-Aided Multiple-Scale Expansion

Author:

Wang Kaier1,Steyn-Ross Moira L.1,Steyn-Ross D. Alistair1,Wilson Marcus T.1

Affiliation:

1. School of Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand

Abstract

The amplitude equation describes a reduced form of a reaction–diffusion system, yet still retains its essential dynamical features. By approximating the analytic solution, the amplitude equation allows the examination of mode instability when the system is near a bifurcation point. Multiple-scale expansion (MSE) offers a straightforward way to systematically derive the amplitude equations. The method expresses the single independent variable as an asymptotic power series consisting of newly introduced independent variables with differing time and space scales. The amplitude equations are then formulated under the solvability conditions which remove secular terms. To our knowledge, there is little information in the research literature that explains how the exhaustive workflow of MSE is applied to a reaction–diffusion system. In this paper, detailed mathematical operations underpinning the MSE are elucidated, and the practical ways of encoding these operations using MAPLE are discussed. A semi-automated MSE computer algorithm Amp_solving is presented for deriving the amplitude equations in this research. Amp_solving has been applied to the classical Brusselator model for the derivation of amplitude equations when the system is in the vicinity of a Turing codimension-1 and a Turing–Hopf codimension-2 bifurcation points. Full open-source Amp_solving codes for the derivation are comprehensively demonstrated and available to the public domain.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3