Affiliation:
1. School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG, UK
Abstract
In this work, we continue the study of the bifurcations of the critical points in a symmetric Caldera potential energy surface. In particular, we study the influence of the depth of the potential on the trajectory behavior before and after the bifurcation of the critical points. We observe two different types of trajectory behavior: dynamical matching and the nonexistence of dynamical matching. Dynamical matching is a phenomenon that limits the way in which a trajectory can exit the Caldera based solely on how it enters the Caldera. Furthermore, we discuss two different types of symmetric Caldera potential energy surface and the transition from the one type to the other through the bifurcations of the critical points.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献