Affiliation:
1. Department of Physics and Astrophysics, University of Delhi, Delhi-110 007, India
Abstract
Selective ion transportation through synthetic ion channels in polymeric membranes (which mimic natural systems, e.g. excitable cell membranes) is being reported through this article. The synthetic ion channels have been created by swift heavy ion irradiation of polymeric membranes followed by chemical etching. Since, the transportation of sodium and potassium ions of aqueous electrolytes through synthetic ion channels in polyethylene terephthalate depends on the electrophoretic forces present in the electrolyte; these ion channels are referred to as “voltage activated channels”. For a particular range of applied voltage, these channels behave as K-channels while they act as Na-channels in another voltage range. The channels have been found to switch between high and low conduction states referred to as opening and closing of ion channels with applied potential. A mechanism is being proposed to explain the voltage dependent ion selectivity of the channels in both closed and open states. Nonlinear dynamical analysis of ion transportation and current oscillations confirm its chaotic behavior. Their possible applications as ionic switches and ionic flip-flops are discussed.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献