Affiliation:
1. Department of Physics, North-Eastern Hill University, Shillong, Meghalaya 793022, India
Abstract
The nonlinear dynamics of an underdamped sinusoidal potential system is experimentally and numerically studied. The system shows regular (nonchaotic) periodic motion when driven by a small amplitude ([Formula: see text]) sinusoidal force (frequency [Formula: see text]). However, when the system is driven by a similarly small amplitude biharmonic force (frequencies [Formula: see text] and [Formula: see text] with amplitudes [Formula: see text] and [Formula: see text], respectively) chaotic motion appear as a function of amplitude ([Formula: see text]) of the [Formula: see text]-frequency component for a fixed [Formula: see text]. We investigate the effect of an additional constant force [Formula: see text] on the dynamics of the system in the ([Formula: see text]) space. We find that [Formula: see text] can cause chaotic motion to move to regular motion and regular motion can also become chaotic in certain ([Formula: see text]) domains.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献