Affiliation:
1. School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
Abstract
We study phase space transport in a 2D caldera potential energy surface (PES) using techniques from nonlinear dynamics. The caldera PES is characterized by a flat region or shallow minimum at its center surrounded by potential walls and multiple symmetry related index one saddle points that allow entrance and exit from this intermediate region. We have discovered four qualitatively distinct cases of the structure of the phase space that govern phase space transport. These cases are categorized according to the total energy and the stability of the periodic orbits associated with the family of the central minimum, the bifurcations of the same family, and the energetic accessibility of the index one saddles. In each case, we have computed the invariant manifolds of the unstable periodic orbits of the central region of the potential, and the invariant manifolds of the unstable periodic orbits of the families of periodic orbits associated with the index one saddles. The periodic orbits of the central region are, for the first case, the unstable periodic orbits with period 10 that are outside the stable region of the stable periodic orbits of the family of the central minimum. In addition, the periodic orbits of the central region are, for the second and third cases, the unstable periodic orbits of the family of the central minimum and for the fourth case the unstable periodic orbits with period 2 of a period-doubling bifurcation of the family of the central minimum. We have found that there are three distinct mechanisms determined by the invariant manifold structure of the unstable periodic orbits that govern the phase space transport. The first mechanism explains the nature of the entrance of the trajectories from the region of the low energy saddles into the caldera and how they may become trapped in the central region of the potential. The second mechanism describes the trapping of the trajectories that begin from the central region of the caldera, their transport to the regions of the saddles, and the nature of their exit from the caldera. The third mechanism describes the phase space geometry responsible for the dynamical matching of trajectories originally proposed by Carpenter and described in [Collins et al., 2014] for the two-dimensional caldera PES that we consider.
Funder
Engineering and Physical Sciences Research Council
Office of Naval Research
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献