Affiliation:
1. Department of Automatic Control and Systems Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
Abstract
An optimal chaos control procedure is proposed. The aim of using this method is to stabilize the chaotic behavior of forced continuous-time nonlinear systems by using an approximation sequence technique and linear optimal control. The idea of the approximation technique is to use a sequence of linear, time-varying equations to approximate the solution of nonlinear systems. In each of these equations, the linear-quadratic optimal tracking control is applied. The purpose is to find a linear time-varying feedback controller which produces an optimized trajectory that converges to a desired signal. This controller is then used in the original nonlinear system. As an example, the procedure is proved to work in the Duffing oscillator and the chaotic pendulum, in which the goal is to direct chaotic trajectories of these systems to a period-n orbit.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献