Affiliation:
1. College of Sciences, Northeastern University, Shenyang, Liaoning Province, P. R. China
Abstract
In this paper, two prey–predator models with distributed delays are presented based on the growth and loss rates of the predator, which are much smaller than that of the prey, leading to a singular perturbation problem. It is obtained that Hopf bifurcation can occur, where the coexistence equilibrium becomes unstable leading to a stable limit cycle. Subsequently, considering the perturbation parameter [Formula: see text], the fact that the solution crossing the transcritical point converges to a stable equilibrium is discussed for the model with Holling type I using the linear chain criterion, center-manifold reduction, the geometric singular perturbation theory and entry–exit function. The existence and uniqueness of relaxation oscillation cycle for the model with Holling type II are obtained. In addition, numerical simulations are provided to verify the analytical results.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
World Scientific Pub Co Pte Ltd
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献