Rare Energy-Conservative Attractors on Global Invariant Hypersurfaces and Their Multistability

Author:

Hu Jianbing1,Qi Guoyuan2ORCID,Wang Ze2,Chen Guanrong3

Affiliation:

1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, P. R. China

2. Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy, Tiangong University, Tianjin 300387, P. R. China

3. Department of Electrical Engineering, City University of Hong Kong, Hong Kong, P. R. China

Abstract

A general formalism describing a type of energy-conservative system is established. Some possible dynamic behaviors of such energy-conservative systems are analyzed from the perspective of geometric invariance. A specific 4D chaotic energy-conservative system with a line of equilibria is constructed and analyzed. Typically, an energy-conservative system is also conservative in preserving its phase volume. The constructed system however is conservative only in energy but is dissipative in phase volume. It produces energy-conservative attractors specifically exhibiting chaotic 2-torus and quasiperiodic behaviors including regular 2-torus and 3-torus. From the basin of attraction containing a line of equilibria, the hidden nature of chaotic attractors generated from the system is further discussed. The energy hypersurface on which the attractors lie is determined by the initial value, which generates complex dynamics and multistability, verified by energy-related bifurcation diagrams and Poincaré sections. A new type of coexistence of attractors on the equal-energy hypersurface is discovered by turning the system parameter values to their opposite. The basins of attraction under three sets of parameter values demonstrate that the Hamiltonian is the leading factor predominating the dynamic behaviors of the system with a closed energy hypersurface. Finally, an analog circuit is designed and implemented to demonstrate the consistent theoretical and simulation results.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3