Affiliation:
1. College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, P. R. China
Abstract
Using bifurcation analytic method of dynamical systems, we investigate the nonlinear waves and their bifurcations of the generalized KdV–mKdV-like equation. We obtain the following results : (i) Three types of new explicit expressions of nonlinear waves are obtained. They are trigonometric expressions, exp-function expressions, and hyperbolic expressions. (ii) Under different parameteric conditions, these expressions represent different waves, such as solitary waves, kink waves, 1-blow-up waves, 2-blow-up waves, smooth periodic waves and periodic blow-up waves. (iii) Two kinds of new interesting bifurcation phenomena are revealed. The first phenomenon is that the single-sided periodic blow-up waves can bifurcate from double-sided periodic blow-up waves. The second phenomenon is that the double-sided 1-blow-up waves can bifurcate from 2-blow-up waves. Furthermore, we show that the new expressions encompass many existing results.
Funder
national natural science foundation of china
natural science foundation of shenzhen
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献