Statistical Properties of Lorenz-like Flows, Recent Developments and Perspectives

Author:

Araujo Vitor1,Galatolo Stefano2,Pacifico Maria José3

Affiliation:

1. Instituto de Matemática, Universidade Federal da Bahia, Av. Adhemar de Barros, S/N, Ondina 40170-110, Salvador, BA, Brazil

2. Dipartimento di Matematica Applicata, Via Buonarroti 1 Pisa, Italy

3. Instituto de Matemática, Universidade Federal do Rio de Janeiro, C. P. 68.530, 21.945-970 Rio de Janeiro, Brazil

Abstract

We comment on the mathematical results about the statistical behavior of Lorenz equations and its attractor, and more generally on the class of singular hyperbolic systems. The mathematical theory of such kind of systems turned out to be surprisingly difficult. It is remarkable that a rigorous proof of the existence of the Lorenz attractor was presented only around the year 2000 with a computer-assisted proof together with an extension of the hyperbolic theory developed to encompass attractors robustly containing equilibria. We present some of the main results on the statistical behavior of such systems. We show that for attractors of three-dimensional flows, robust chaotic behavior is equivalent to the existence of certain hyperbolic structures, known as singular-hyperbolicity. These structures, in turn, are associated with the existence of physical measures: in low dimensions, robust chaotic behavior for flows ensures the existence of a physical measure. We then give more details on recent results on the dynamics of singular-hyperbolic (Lorenz-like) attractors: (1) there exists an invariant foliation whose leaves are forward contracted by the flow (and further properties which are useful to understand the statistical properties of the dynamics); (2) there exists a positive Lyapunov exponent at every orbit; (3) there is a unique physical measure whose support is the whole attractor and which is the equilibrium state with respect to the center-unstable Jacobian; (4) this measure is exact dimensional; (5) the induced measure on a suitable family of cross-sections has exponential decay of correlations for Lipschitz observables with respect to a suitable Poincaré return time map; (6) the hitting time associated to Lorenz-like attractors satisfy a logarithm law; (7) the geometric Lorenz flow satisfies the Almost Sure Invariance Principle (ASIP) and the Central Limit Theorem (CLT); (8) the rate of decay of large deviations for the volume measure on the ergodic basin of a geometric Lorenz attractor is exponential; (9) a class of geometric Lorenz flows exhibits robust exponential decay of correlations; (10) all geometric Lorenz flows are rapidly mixing and their time-1 map satisfies both ASIP and CLT.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Upper, down, two-sided Lorenz attractor, collisions, merging, and switching;Ergodic Theory and Dynamical Systems;2024-02-21

2. Optimisation of chaotically perturbed acoustic limit cycles;Nonlinear Dynamics;2020-04

3. Automatic generation of bounds for polynomial systems with application to the Lorenz system;Chaos, Solitons & Fractals;2018-08

4. On the topology of the Lorenz system;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2017-09

5. Exact Recovery of Chaotic Systems from Highly Corrupted Data;Multiscale Modeling & Simulation;2017-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3