Affiliation:
1. School of Mathematics and Statistics, Southwest University, Chongqing 400715, P. R. China
Abstract
This paper deals with a diffusive predator–prey model with Bazykin functional response. The parameter regions for the stability and instability of the unique constant steady state are derived. The Turing (diffusion-driven) instability which induces spatial inhomogeneous patterns, the existence of time-periodic orbits which produce temporal inhomogeneous patterns, the existence and nonexistence of nonconstant steady state positive solutions are proved. Numerical simulations are presented to verify and illustrate the theoretical results.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献