Jump Resonance in Fractional Order Circuits

Author:

Buscarino Arturo1ORCID,Caponetto Riccardo1,Famoso Carlo1,Fortuna Luigi1

Affiliation:

1. Dipartimento di Ingegneria Elettrica Elettronica e Informatica, Università degli Studi di Catania, viale A. Doria 6, Catania 95125, Italy

Abstract

The occurrence of an hysteretic loop in the frequency response of a driven nonlinear system is a phenomenon deeply investigated in nonlinear control theory. Such a phenomenon, which is linked to the multistable behavior of the system, is called jump resonance, since the magnitude of the frequency response is subjected to an abrupt jump up/down with respect to the increasing/decreasing of the frequency of the driving signal. In this paper, we aim at investigating fractional order nonlinear systems showing jump resonance, that is systems in which the order of the derivative is noninteger and their frequency response has a magnitude that is a multivalued function in a given range of frequencies. Furthermore, a strategy for designing fractional order systems showing jump resonance is presented along with the procedure to design and implement an analog circuit based on the approximation of the fractional order derivative. An extensive numerical analysis allows one to assess that the phenomenon is robust to the difference in the derivative order, enlightening the first example of a system with order lower than two which is able to demonstrate a jump resonance behavior.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear Jump Resonance: Recent Trends From Analysis to Electronic Circuits Implementations;IEEE Transactions on Circuits and Systems II: Express Briefs;2023

2. Multiple Hysteresis Jump Resonance in a Class of Forced Nonlinear Circuits and Systems;International Journal of Bifurcation and Chaos;2020-12-09

3. Realization of fractional order circuits by a Constant Phase Element;European Journal of Control;2020-07

4. Multijump Resonance with Chua’s Circuit;New Trends in Nonlinear Dynamics;2020

5. Multi-jump resonance systems;International Journal of Control;2018-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3