Uniform Persistence and Periodic Solutions of Generalized Predator–Prey Type Eco-Epidemiological Systems

Author:

Sun Mengfeng1,Chen Guoting2ORCID,Fu Xinchu3

Affiliation:

1. School of Mathematical Sciences, Nanjing Normal University, 210023 Nanjing, P. R. China

2. School of Science, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, P. R. China

3. Department of Mathematics, Shanghai University, 200444 Shanghai, P. R. China

Abstract

In this paper, we analyze a class of three-dimensional eco-epidemiological models where prey is subject to Allee effects and infection. We first establish the existence, uniqueness, positivity and uniform ultimate boundedness of the solutions for the proposed system in the positive octant. For three subsystems, we investigate the existence of their respective trivial and positive equilibria and determine the conditions for some bifurcations (Hopf bifurcation, Bogdanov–Takens bifurcation of codimension-2 and saddle-node bifurcation) to occur. We find that the Allee effect, nonmonotonic functional response and intra-class competition in susceptible preys enable the S–I and S–P subsystems to have richer dynamics. For example, the S–I subsystem can have up to three positive equilibria, the S–P subsystem with nonmonotonic functional response can have two positive equilibria while it is impossible in monotonic situation, and high intra-class competition in susceptible preys may lead to the extinction of the predator population, etc. We show that the strong Allee effect can create a separatrix curve (or surface), leading to multistability. Then, we study the uniform persistence of the full system and identify an interior periodic orbit by applying Poincaré map and bifurcation theory. Our analysis reveals that the introduction of the infection or predation may act as a biological control to save the population from extinction and the interaction between these two factors yields a diverse array of biologically relevant behaviors. Finally, some numerical simulations are performed to support and supplement our analytical findings.

Funder

Natural Science Foundation of China

Outstanding Youth Foundation of Jiangsu Province of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3