Affiliation:
1. Department of Aerospace Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK
Abstract
High Reynolds number flows are typical for many applications including those found in aerospace. In these conditions nonlinearities arise which can, under certain conditions, result in instabilities of the flow. The accurate prediction of these instabilities is vital to enhance understanding and aid in the design process. The stability boundary can be traced by following the path of a bifurcation as two parameters are varied using a direct bifurcation tracking method. Historically, these methods have been applied to small-scale systems and only more recently have been used for large systems as found in Computational Fluid Dynamics. However, these have all been concerned with flows that are inviscid. We show how direct bifurcation tracking methods can be applied efficiently to high Reynolds number flows around an airfoil. This has been demonstrated through the presentation of a number of test cases using both flow and geometrical parameters.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献