Sparse Recovery and Dictionary Learning to Identify the Nonlinear Dynamical Systems: One Step Toward Finding Bifurcation Points in Real Systems

Author:

Nazarimehr Fahimeh1,Ghaffari Aboozar2,Jafari Sajad1ORCID,Golpayegani Seyed Mohammad Reza Hashemi1

Affiliation:

1. Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413, Iran

2. Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

Modeling real dynamical systems is an important challenge in many areas of science. Extracting governing equations of systems from their time-series is a possible solution for such a challenge. In this paper, we use the sparse recovery and dictionary learning to extract governing equations of a system with parametric basis functions. In this algorithm, the assumption of sparsity in the functions of dynamical equations is used. The proposed algorithm is applied to different types of discrete and continuous nonlinear dynamical systems to show the generalization ability of this method. On the other hand, transition from one dynamical regime to another is an important concept in studying real world complex systems like biological and climate systems. Lyapunov exponent is an early warning index. It can predict bifurcation points in dynamical systems. Computation of Lyapunov exponent is a major challenge in its application in real systems, since it needs long time data to be accurate. In this paper, we use the predicted governing equation to generate long time-series, which is needed for Lyapunov exponent calculation. So the proposed method can help us to predict bifurcation points by accurate calculation of Lyapunov exponents.

Funder

Iran National Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3