Interactions of the Julia Set with Critical and (Un)Stable Sets in an Angle-Doubling Map on ℂ\{0}

Author:

Hittmeyer Stefanie1,Krauskopf Bernd1,Osinga Hinke M.1

Affiliation:

1. Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

Abstract

We study a nonanalytic perturbation of the complex quadratic family z ↦ z2 + c in the form of a two-dimensional noninvertible map that has been introduced by Bamón et al. [2006]. The map acts on the plane by opening up the critical point to a disk and wrapping the plane twice around it; points inside the disk have no preimages. The bounding critical circle and its images, together with the critical point and its preimages, form the so-called critical set. For parameters away from the complex quadratic family we define a generalized notion of the Julia set as the basin boundary of infinity. We are interested in how the Julia set changes when saddle points along with their stable and unstable sets appear as the perturbation is switched on. Advanced numerical techniques enable us to study the interactions of the Julia set with the critical set and the (un)stable sets of saddle points. We find the appearance and disappearance of chaotic attractors and dramatic changes in the topology of the Julia set; these bifurcations lead to three complicated types of Julia sets that are given by the closure of stable sets of saddle points of the map, namely, a Cantor bouquet and what we call a Cantor tangle and a Cantor cheese. We are able to illustrate how bifurcations of the nonanalytic map connect to those of the complex quadratic family by computing two-parameter bifurcation diagrams that reveal a self-similar bifurcation structure near the period-doubling route to chaos in the complex quadratic family.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Reference47 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3