Affiliation:
1. MOE Key Lab for Strength and Vibration, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, P. R. China
Abstract
A crisis is investigated in high dimensional chaotic systems by means of generalized cell mapping digraph (GCMD) method. The crisis happens when a hyperchaotic attractor collides with a chaotic saddle in its fractal boundary, and is called a hyperchaotic boundary crisis. In such a case, the hyperchaotic attractor together with its basin of attraction is suddenly destroyed as a control parameter passes through a critical value, leaving behind a hyperchaotic saddle in the place of the original hyperchaotic attractor in phase space after the crisis, namely, the hyperchaotic attractor is converted into an incremental portion of the hyperchaotic saddle after the collision. This hyperchaotic saddle is an invariant and nonattracting hyperchaotic set. In the hyperchaotic boundary crisis, the chaotic saddle in the boundary has a complicated pattern and plays an extremely important role. We also investigate the formation and evolution of the chaotic saddle in the fractal boundary, particularly concentrating on its discontinuous bifurcations (metamorphoses). We demonstrate that the saddle in the boundary undergoes an abrupt enlargement in its size by a collision between two saddles in basin interior and boundary. Two examples of such a hyperchaotic crisis are given in Kawakami map.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献