NONLINEAR DYNAMICS OF A BOUNCING BALL DRIVEN BY ELECTRIC FORCES

Author:

KHAYARI A.1,PÉREZ A. T.1

Affiliation:

1. Departamento de Electrónica y Electromagnetismo, Facultad de Física, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain

Abstract

This paper is devoted to a theoretical and experimental study of the dynamics of a bouncing ball driven by an electric force. The experimental model consists of a metallic ball immersed in a poorly conducting liquid between two horizontal electrodes. The ball bounces upon the lower electrode as a high voltage is applied between the two plates. The measurement of the time between successive impacts produces a time series, which depends on two control parameters, the amplitude and the frequency of the applied voltage. A theoretical model is proposed, which provides a discrete nonlinear map, and discussed in comparison with the experimental results. It is shown that the system exhibits a period doubling route to chaos and a non-Feigenbaum universal scaling at the onset of chaos. Chaotic motion is investigated using the usual tools: Lyapunov exponents, correlation dimensions and entropies. Fractal structure of the chaotic attractor is also brought to evidence in experimental time series as well as in numerical simulations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Drop motion, deformation, and cyclic motion in a non-uniform electric field in the viscous limit;Physics of Fluids;2013-07

2. Electrohydrodynamic Systems;Springer Handbook of Experimental Fluid Mechanics;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3