IMPROVED SUFFICIENT CONDITIONS FOR GLOBAL EXPONENTIAL STABILITY OF RECURRENT NEURAL NETWORKS WITH DISTRIBUTED DELAYS

Author:

WU WEI1,CUI BAO TONG1,ZENG ZHIGANG2

Affiliation:

1. Research Center of Control Science and Engineering, Southern Yangtze University, 1800 Lihu Rd., Wuxi, Jiangsu 214122, P. R. China

2. School of Automation, Wuhan University of Technology, Wuhan, Hubei 430070, P. R. China

Abstract

In this paper, the globally exponential stability of recurrent neural networks with continuously distributed delays is investigated. New theoretical results are presented in the presence of external stimuli. It is shown that the recurrent neural network is globally exponentially stable, and the estimated location of the equilibrium point can be obtained. As typical representatives, the Hopfield neural network (HNN) and the cellular neural network (CNN) are examined in detail. Comparison between our results and the previous results admits the improvement of our results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3