Dynamical Analysis of a Melanoma Model with Immune Response

Author:

Dai Qinrui1,Duan Daifeng1,Guo Yuxiao1ORCID

Affiliation:

1. Department of Mathematics, Harbin Institute of Technology, Weihai 264209, P. R. China

Abstract

In this paper, we study the stability and bifurcation behavior of a three-dimensional melanoma model with immune response. The system has at least one and at most three positive equilibria. It is proved that the system undergoes Hopf bifurcation and saddle-node bifurcation at the positive equilibrium. We investigate the direction of Hopf bifurcation and stability of the bifurcating periodic solution by center manifold theorem and normal form theory. Moreover, codimension two bifurcations of the system are analyzed. We demonstrate the existence of Bautin bifurcation and Bogdanov–Takens bifurcation of the system. The normal form of Bautin bifurcation and Bogdanov–Takens bifurcation are given. Finally, some numerical simulations are demonstrated to support our theoretical results, and the importance of some parameters of the system is discussed, in particular the activation rate of CD8[Formula: see text]T cells.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3