Affiliation:
1. School of Mathematical Sciences, University of Jinan, Jinan 250022, Shandong, P. R. China
2. Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
Abstract
Networks of coupled oscillators have been used to model various real-world self-organizing systems. However, the dynamics, especially chaos and bifurcation, of complex-valued networks are rarely investigated. In this paper, a ring network of interacting complex-valued van der Pol oscillators is studied to model the formation of ring dynamics. Although there are only stable limit cycles in a complex-valued van der Pol oscillator, chaos, hyperchaos, and coexisting chaotic attractors are observed from the ring network, which are analyzed by using the Lyapunov exponent spectrum, bifurcation diagram and 0–1 test. In addition, complexity analysis on nonlinear coefficients and coupling strengths illustrates that the range of parameters within the chaotic (hyperchaotic) region has positive correlation with the number of oscillators. It is shown that the chaotic bifurcation path is highly robust against the size variation of the ring network, which always evolves to chaos directly from period-1 and quasi-periodic states, respectively. Moreover, it is demonstrated that complete synchronization and phase synchronization of oscillations are stable in a large-scale ring network, while chaotic phase synchronization is unstable in a small-scale network.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献