Effects of Predator-Driven Prey Dispersal on Sustainable Harvesting Yield

Author:

Bhattacharyya Joydeb1ORCID,Piiroinen Petri T.2ORCID,Banerjee Soumitro3

Affiliation:

1. Department of Mathematics, Karimpur Pannadevi College, Nadia, WB 741152, India

2. Division of Dynamics, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden

3. Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, WB 741246, India

Abstract

Dispersal of organisms between patches is a common phenomenon in ecology and plays an important role in predator–prey population dynamics. We propose a nonsmooth Filippov predator–prey model in a two-patch environment characterized by a generalist predator-driven intermittent refuge protection of an apprehensive prey along with a balanced dispersal of the prey between refuge and nonrefuge areas. By employing qualitative techniques of nonsmooth dynamical systems, we see that the switching surface is a repeller whenever the interior equilibria are virtual, causing long-term population fluctuations. We find that the level of prey vigilance and the rate of prey dispersal play pivotal roles in the total harvesting yield. We observe that a sustainable high harvesting yield is possible when the prey is less vigilant and obtain the harvesting efforts for maximum sustainable total yield (MSTY). We further modify the model by considering a continuous threshold predator-driven prey dispersal and show that the model exhibits a Hopf bifurcation when the level of prey vigilance exceeds some critical threshold value. By comparing the dynamics of the two models we see that for a sustainable high harvesting yield of the system with continuous threshold dispersal, the prey needs to be highly vigilant compared to that of the system with intermittent dispersal of the prey. Further, we find numerically that the estimated MSTY from both models remains the same.

Funder

Science and Engineering Research Board

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stability analysis of Filippov prey–predator model with fear effect and prey refuge;Journal of Applied Mathematics and Computing;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3