Controlled Quasi-Latitudinal Solutions for Ultra-Fast Spin-Torque Magnetization Switching

Author:

Fortunati Alessandro1ORCID,d’Aquino Massimiliano1ORCID,Serpico Claudio1ORCID

Affiliation:

1. Department of Electrical Engineering and Information Technologies, University of Naples Federico II, I-80125 Naples, Italy

Abstract

The aim of this paper is to present a novel class of time-dependent controls to realize ultra-fast magnetization switching in nanomagnets driven by spin-torques produced by spin-polarized electric currents. Magnetization dynamics in such complex systems is governed by the Landau–Lifshitz–Slonczewski equation which describes the precessional motion of (dimensionless) magnetization vector on the unit-sphere. The relevant case of nanoparticles with uniaxial anisotropy having in-plane easy and intermediate axes as well as out-of-plane hard axis is considered. By exploiting the characteristic smallness of damping and spin-torque intensity, the complexity of the magnetic system’s dynamic is dealt with by employing tools borrowed from Hamiltonian Perturbation Theory. More precisely, the aforementioned controls are constructed via suitable perturbative tools in a way to realize approximate latitudinal solutions (i.e. motions on a sphere in which the out-of-plane magnetization component stays constant) with the effect to fast “switch” the system from one stationary state to another. The possibility to keep a (“small”) bounded value of the out-of-plane coordinate throughout this process of “transfer” turns out to be advantageous in the applications as it sensibly reduces the post-switching relaxation oscillations that may cause the failure of switching in real samples. Further relevant quantitative results on the behavior of the solutions during the pre- and post-switching stages (termed “expulsion” and “attraction”, respectively) are given as a by-product. A selection of validating numerical experiments is presented alongside the corresponding theoretical results.

Funder

Italian Ministry of University and Research

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3