Topological Horseshoe Analysis, Ultimate Boundary Estimations of a New 4D Hyperchaotic System and Its FPGA Implementation

Author:

Dong Enzeng1ORCID,Yuan Mingfeng1ORCID,Zhang Cong1,Tong Jigang1,Chen Zengqiang2,Du Shengzhi3

Affiliation:

1. Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, Tianjin University of Technology, Tianjin 300384, P. R. China

2. Department of Automation, Nankai University, Tianjin 300071, P. R. China

3. Department of Mechanical Engineering, Tshwane University of Technology, Pretoria 0001, South Africa

Abstract

This paper constructs a new four-dimensional (4D) hyperchaotic system. Firstly, the influence of parameter variation on the dynamic behavior of the system is analyzed in detail using Lyapunov exponents and the bifurcation diagram. Additionally, the topological horseshoe finding algorithm is based on three-dimensional (3D) hyperchaotic mapping. Through searching for the 3D topological horseshoe with two-dimensional stretching on the Poincaré section, the existence of the 4D hyperchaotic system is proved in the mathematical sense. Next, Lyapunov stability theory and optimization method are used to further analyze the ultimate boundary of the proposed 4D hyperchaotic system. Thus, the 3D ellipsoidal boundary of the hyperchaotic system is found. Finally, this paper also takes the hyperchaotic system as an example and presents the experimental results of generated hyperchaotic attractors by FPGA technology. The experimental results show that the phase diagram of hyperchaotic system is consistent for the simulated results. Due to the more complex dynamic behavior, the proposed system is suitable for engineering application, such as in chaotic secure communications.

Funder

National Natural Science Foundation of China

The Foundation of the Application Base and Frontier Technology Research Project of Tianjin

South African National Research Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Reference51 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3